Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119809, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113791

RESUMO

Anthropogenic land use and land cover changes are major drivers of environmental degradation and declining soil health across heterogeneous landscapes in Central India. To examines the land cover changes and spatio-temporal variations in forest carbon stock and soil organic carbon (SOC) over the past 25 years in central India. Geospatial techniques, coupled with ground measurements were employed to detect changes in land cover, carbon stocks in vegetation, and soil carbon in various vegetation types. The results indicate that forested areas have decreased, while agriculture and habitation have expanded between 1997 and 2022. Vegetation C stocks varied significantly (P < 0.05) from 39.42 to 139.95 Mg ha-1 and the SOC varied from 7.02 to 17.98 Mg ha-1 under different soil profiles across vegetation types, which decreased with soil depth, while the pH and bulk density increased. The maximum bulk density in the soil was found at a depth of 40-60 cm (lower profile) in Bamboo Brake, while the minimum was observed under Dense Mixed Forest at a depth of 0-20 cm (top profile). The topsoil profile contributed 33.6%-39%, the middle profile (20-40 cm) was 33.6%-34.4%, and the lower profile was 26.5%-30.8% of soil organic carbon. The study site has experienced rapid carbon losses due to changes in land cover, such as illegal expansion of agriculture, encroachments into forest fringes, and activities like selective logging and overgrazing, which have degraded dense forests. The ecological engineering of degraded ecosystems poses a great challenge and application of complex biological, mechanical and engineering measures is highly cumbersome, expensive, uneconomical and practically not feasible for upscaling. Nevertheless, proposed nature-based solutions mimic natural reparation and processes provide sustainable interventions for the reclamation of ruined landscapes besides improving ecological integrity and rendering many co-benefits to ecosystems and human societies.


Assuntos
Carbono , Ecossistema , Humanos , Carbono/análise , Solo , Florestas , Sequestro de Carbono , Índia
2.
Bioresour Technol ; 97(1): 57-68, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16154503

RESUMO

Variations in growth, above- and below-ground biomass and nutrient distribution were examined in five clones (G3, G48, 65/27, D121 and S7C1) of Populus deltoides grown under agrisilviculture system in sub-humid tropics of Central India. The monoclonal blocks were planted at 4x5 m in a randomized block design with three replications. Diameter at breast height (dbh) and tree height were consistently higher in clone 65/27 and lowest in clone S7C1. Mean annual increments (MAI) in dbh and height were 1.6 and 1.3 times higher in clone 65/27 compared to clone S7C1. Total biomass varied from 48.5 to 62.2 Mg ha(-1) in six-year-old clones. In rank order, the total biomass of clones was: 65/27>D121>G48>G3>S7C1. Stem wood accounted 60.4-68.9% to total biomass followed by coarse roots (12.2-18.9%), branches (12.3-15%), leaves (3.02-6.9%) and fine roots (1.5-2.7%). Root-shoot ratio ranged from 0.2 to 0.35. It was highest in clone G48 and lowest in clone S7C1. In six-year-old clones, total N ranged from 184.3 to 266.3 kg ha(-1), P from 16.8 to 31.1 kg ha(-1) and K from 81.9 to 128.7 kg ha(-1). Total N and P were highest in clone 65/27, while K in clone G48. Nutrients were lowest in clone S7C1. In general, maximum nutrients (N, P and K) were allocated to above-ground components (leaves>stem>branches) than below-ground components. Available N, P and K in the soil improved significantly after six years of planting. It was higher in 0-20 cm and decreased with soil depth. At 0-20 cm soil depth, N increased from 14.9% to 24.1%, P from 17.2% to 23.3% and K from 3.1% to 5.1% under different clones. The yield of both soybean and wheat reduced under poplar clones. Yield losses in soybean ranged from 10.1% to 33% and wheat from 15% to 30.3% under different clones. The management strategies for reducing tree-crop competition and nutrient export from the site under P. deltoides based agrisilviculture system for achieving sustainable production are discussed.


Assuntos
Agricultura , Populus/crescimento & desenvolvimento , Biomassa , Nitrogênio/metabolismo , Fósforo/metabolismo , Estruturas Vegetais , Populus/metabolismo , Potássio/metabolismo , Análise de Regressão , Solo , Glycine max/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
3.
Bioresour Technol ; 90(2): 109-26, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12895553

RESUMO

Growth, biomass, carbon storage and nutrient (N, P and K) variations in 1 to 6-year-old chronosequence plantations of Gmelina arborea were studied in three degraded red lateritic sites in central India. Growth parameters (dbh, total height and number of branches) varied significantly due to difference in age and site quality, but tree density showed non-significant variation. Stand biomass ranged from 3.94 (1-year-old) to 53.67 Mgha(-1) (6-year-old) and stand carbon in 6-year-old plantations ranged from 24.12 to 31.12 Mgha(-1) at different sites. Among the tree components, the stem wood accounted for maximum C (56.25% at site 1) followed by branches (19.8% at site 3), roots (18.51% at site 2) and foliage (7.01% at site 3). Mean annual C accretion at 6 years age of plantation was highest in site 3 and it was 0.35, 2.66, 0.965 and 0.87 Mgha(-1) for leaf, stem, branches and roots, respectively. Quantity of nutrients increased with age. Total nitrogen accumulation in 6-year-old stands at the three sites ranged from 212.9 to 279.5 kgha(-1) with a mean annual storage of 238.43 kgha(-1) and total K ranged from 170.8 to 220.5 kgha(-1) with a mean annual storage of 189.93 kgha(-1). Phosphorous accumulation was lowest with a mean storage of 16.75 kgha(-1). The organic carbon and nutrients in the soils improved significantly after 6 years of G. arborea planting. Soil organic carbon increased from 8.46 to 14.02 Mgha(-1) within 6 years. At soil depths 0-20 cm, 21-40 cm and 41-60 cm, available N enhanced by 14.85%, 11.98% and 11.25%, K by 10%, 9.13% and 10.63%, whereas phosphorous declined by 26%, 23% and 20%, respectively. At 6 years, G. arborea stands sequestered 31.37 Mgha(-1) carbon. The nutrient management strategies in relation to carbon accretion in G. arborea stands on degraded lateritic sites are discussed.


Assuntos
Biomassa , Carbono/química , Lamiaceae/crescimento & desenvolvimento , Lamiaceae/fisiologia , Solo/análise , Ecossistema , Índia , Lamiaceae/química , Nitrogênio/química , Fósforo/química , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...